Nos sources

[1] V. Arfi, D. Bagoudou, N. Korboulewsky, et G. Bois, « Initial efficiency of a bamboo grove–based treatment system for winery wastewater », p. 9, 2009.

[2] J. Piouceau et J. Morel, « Bamboo Plantations for Phytoremediation of Pig Slurry: Plant Response and Nutrient Uptake », p. 17, 2020.

[3] F. Bian, Z. Zhong, X. Zhang, C. Yang, et X. Gai, « Bamboo – An untapped plant resource for the phytoremediation of heavy metal contaminated soils », Chemosphere, vol. 246, p. 125750, mai 2020, doi: 10.1016/j.chemosphere.2019.125750.

[4] X. Song et al., « Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges », vol. 19, p. 11, 2011.

[5] Z. Ben-zhi, F. Mao-yi, X. Jin-zhong, Y. Xiao-sheng, et L. Zheng-cai, « Ecological functions of bamboo forest: Research and Application », J. For. Res., vol. 16, no 2, p. 143‑147, juin 2005, doi: 10.1007/BF02857909.

[6] J. Q. Yuen, T. Fung, et A. D. Ziegler, « Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties », For. Ecol. Manag., vol. 393, p. 113‑138, juin 2017, doi: 10.1016/j.foreco.2017.01.017.

[7] W. Liese et M. Köhl, Éd., Bamboo: The Plant and its Uses, vol. 10. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-14133-6.

[8] Y. Isagi, T. Kawahara, K. Kamo, et H. Ito, « Net production and carbon cycling in a bamboo Phyllostachys pubescens stand », p. 12.

[9] X. Song, C. Peng, G. Zhou, H. Gu, Q. Li, et C. Zhang, « Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla) », Sci. Rep., vol. 6, no 1, p. 25908, sept. 2016, doi: 10.1038/srep25908.

[10] R. Düking, J. Gielis, et W. Liese, « Carbon Flux and Carbon Stock in a Bamboo Stand and their Relevance for Mitigating Climate Change », vol. 24, p. 6, 2011.

[11] D. E. C. Depuydt et al., « European bamboo fibres for composites applications, study on the seasonal influence », Ind. Crops Prod., vol. 133, p. 304‑316, juill. 2019, doi: 10.1016/j.indcrop.2019.03.026.

[12] W. Liese, The anatomy of bamboo culms. Beijing: International Network for Bamboo and Rattan, 1998.

[13] B. Sharma, A. Gatóo, M. Bock, et M. Ramage, « Engineered bamboo for structural applications », Constr. Build. Mater., vol. 81, p. 66‑73, avr. 2015, doi: 10.1016/j.conbuildmat.2015.01.077.

[14] O. B. Carcassi, P. Minotti, G. Habert, I. Paoletti, S. Claude, et F. Pittau, « Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation », Sustainability, vol. 14, no 3, p. 1384, janv. 2022, doi: 10.3390/su14031384.

[15] D. M. Nguyen, A.-C. Grillet, Q.-B. Bui, T. M. H. Diep, et M. Woloszyn, « Building bio-insulation materials based on bamboo powder and bio-binders », Constr. Build. Mater., vol. 186, p. 686‑698, oct. 2018, doi: 10.1016/j.conbuildmat.2018.07.153.

[16] A. Javadian, « Composite Bamboo and its Application as Reinforcement in Structural Concrete », ETH Zurich, 2017. doi: 10.3929/ETHZ-B-000185002.

[17] L. Rosse Caldas, A. Bernstad Saraiva, V. M. Andreola, et R. Dias Toledo Filho, « Bamboo bio-concrete as an alternative for buildings’ climate change mitigation and adaptation », Constr. Build. Mater., vol. 263, p. 120652, déc. 2020, doi: 10.1016/j.conbuildmat.2020.120652.

[18] T. K. Dhamodaran, R. Gnanaharan, et K. Sankara Pillai, « Bamboo for pulp and paper - A state of the art review », KERALA FOREST RESEARCH INSTITUTE, 2003.

[19] C. Chen et al., « Properties and Applications of Bamboo Fiber–A Current-State-of-the Art », J. Renew. Mater., vol. 10, no 3, p. 605‑624, 2022, doi: 10.32604/jrm.2022.018685.

[20] H. P. S. Abdul Khalil, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, et Y. S. Hadi, « Bamboo fibre reinforced biocomposites: A review », Mater. Des., vol. 42, p. 353‑368, déc. 2012, doi: 10.1016/j.matdes.2012.06.015.

[21] G.-H. Delmas, J. H. Banoub, et M. Delmas, « Lignocellulosic Biomass Refining: A Review Promoting a Method to Produce Sustainable Hydrogen, Fuels, and Products », Waste Biomass Valorization, vol. 13, no 5, p. 2477‑2491, mai 2022, doi: 10.1007/s12649-021-01624-6.

[22] Y. Wang, Y. Hu, X. Zhao, S. Wang, et G. Xing, « Comparisons of Biochar Properties from Wood Material and Crop Residues at Different Temperatures and Residence Times », Energy Fuels, vol. 27, no 10, p. 5890‑5899, oct. 2013, doi: 10.1021/ef400972z.

[23] C. D. Montaño, « Potential of Bamboo for Renewable Energy: Main Issues and Technology Options », p. 117.

[24] S. Rangaraj et R. Venkatachalam, « A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance », Appl. Nanosci., vol. 7, no 5, p. 145‑153, juin 2017, doi: 10.1007/s13204-017-0557-z.

[25] C. Nirmala, M. S. Bisht, H. K. Bajwa, et O. Santosh, « Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry », Trends Food Sci. Technol., vol. 77, p. 91‑99, juill. 2018, doi: 10.1016/j.tifs.2018.05.003.

[26] Y. Wang et al., « A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits », J. Funct. Foods, vol. 71, p. 104015, août 2020, doi: 10.1016/j.jff.2020.104015.

[27] J. H. Andriarimalala, C. C. Kpomasse, P. Salgado, N. Ralisoa, et J. Durai, « Nutritional potential of bamboo leaves for feeding dairy cattle », Pesqui. Agropecuária Trop., vol. 49, p. e54370, 2019, doi: 10.1590/1983-40632019v4954370.

[28] M. H. F. Felisberto, P. S. E. Miyake, A. L. Beraldo, A. R. Fukushima, L. A. B. Leoni, et M. T. P. S. Clerici, « Effect of the addition of young bamboo culm flour as a sugar and/or fat substitute in cookie formulations », Food Sci. Technol., vol. 39, no 4, p. 867‑874, déc. 2019, doi: 10.1590/fst.12418.

[29] S. P. P. Vanbeveren et al., « Mechanised harvesting of short-rotation coppices », Renew. Sustain. Energy Rev., vol. 76, p. 90‑104, sept. 2017, doi: 10.1016/j.rser.2017.02.059.

[30] S. P. S. Guerra, G. Oguri, H. de Jesus Eufrade, R. Xavier de Melo, et R. Spinelli, « Mechanized harvesting of bamboo plantations for energy production: Preliminary tests with a cut-and-shred harvester », Energy Sustain. Dev., vol. 34, p. 62‑66, oct. 2016, doi: 10.1016/j.esd.2016.07.005.

[31] P. Shi et al., « Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China », Glob. Ecol. Conserv., vol. 22, p. e00924, juin 2020, doi: 10.1016/j.gecco.2020.e00924.

[32] A. Neményi, « THE EFFECT OF WATER AVAILABILITY ON SHOOT AND CULM PROPERTIES OF A DEVELOPING PHYLLOSTACHYS IRIDESCENS GROVE », Appl. Ecol. Environ. Res., vol. 15, no 3, p. 25‑38, 2017, doi: 10.15666/aeer/1503_025038.

[33] Kleinhenz, Midmore, Walsh, et Milne, « A case study on the effects of irrigation and fertilization on soil water and soil nutrient status, and on growth and yield of bamboo (Phyllostachys pubescens) shoots », J. Bamboo Rattan, vol. 2, no 3, p. 281‑293, nov. 2003, doi: 10.1163/156915903322555568.

[34] C. Li et al., « Effects of different planting approaches and site conditions on aboveground carbon storage along a 10-year chronosequence after moso bamboo reforestation », For. Ecol. Manag., vol. 482, p. 118867, févr. 2021, doi: 10.1016/j.foreco.2020.118867.

[35] Q.-F. Xu, C.-F. Liang, J.-H. Chen, Y.-C. Li, H. Qin, et J. J. Fuhrmann, « Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes + », Glob. Ecol. Conserv., vol. 21, p. e00787, mars 2020, doi: 10.1016/j.gecco.2019.e00787.

Webdesign & identité visuelle réalisés par le studio
Crédits images : @unsplash / @horizom